Optogenetics

A technique to change **particular** living cell activity **using a light**.

Gökhan Koçmarlı 22 May 2023

Understanding the Brain

- Transcranial Magnetic Stimulation
- Transcranial Oltrasound Stimulation
- Transcranial Flectrical Stimulation
- Deep Brain Stimultion

For spatial and temporal precise control: **Optogenetics**

Extending Human Lifespan

If we would understand the behaviour of the brain deeply, we can treat some biological and visionary diseases.

- Alzheimer's Disease
- Parkinson's Disease
- Epilepsy
- Stroke
- Vision
- ... and many more!

- Neuron cells,
 - Stem cells,
 - (etc.)

- Intensity
- Wavelength
- Multi- or singleprocessing

- Arkeorhodopsins,
- Channelrhodopsins,
 - (... other opsins)

Figures taken from <u>Neuroscience: Canadian 1st Edition Open Textbook</u> by Dr William Ju.

Opsins: Creates Voltage from Light

[1] Algal Ocelloids and Plant Ocelli - Scientific Figure <u>on ResearchGate</u> [accessed 18 May, 2023]
[2] Using Drosophila to demonstrate optogenetic tools <u>on IndianaEdu</u> [accessed 18 May 2023]

Opsins Used in Optogenetics

Cation Channels (activators)

Molecule	Wavelength Needed		
ChR2	470 nm	Spike	e Freq up to 30 Hz rly real-time!
C1v1	560 nm	near	
bReaChES	590 nm		
Chrimson	590 nm		
ReaChR	620 nm		

Anion Channels (inhibitors)

Molecule	Wavelength Needed
GtACR2	470 nm
ArchT	540 nm
NpHr	590 nm
JAWS	620 nm

Delivering Opsins to Neuron's: Gen Threapy with Viruses

- 1. Select a virus type that is suitable for your group of interest.
- 2. Add the opsin's genetic code into virus.
- 3. Give the virus into the region of interest and wait for the neuron to produce opsins.
- 4. The opsins will be on the walls of the cells.

LEDs

- Wide field-of-view
- Cheaper
- UV to NIR
- Fast response
- Low intensity

LASERs

- Narrow field-of-view
- Expensive
- Narrow spectral bandwith
- Slow responses
- High intensity

Widefield Optogenetics

Cellular-Resolution Optogenetics

2-Photon Microscopy

- Less scattering in deep tissues
- High resolution on 3D localization

Approaches

- Scan-based: Longer time
- Parallel: Higher powered

Figure is taken from Mightex's blog on Optogenetics found here. [accessed 19 May, 2023]

Scan-based Techniques for Cellular-Resolution

Timing is the main drawback. $T_{total} = N_{neurons} \cdot T_{activation} + (N_{neurons} - 1) \cdot T_{change}$

Parallel Techniques for Cellular-Resolution

With Spatial Light Modulators

A **programmable** optics intensity and angle modulator. It includes **array of pixels** which all have different controllers.

With Holography

Recording and re-construction of lights with their **interference pattern**.

Mixed Version

Save the pattern into a **computer generated holography**, and convert it to a form of SLM can understand. Afterwards, **contine with SLM technique**.

Figure is taken from Mightex's blog on Optogenetics found <u>here.</u> [accessed 19 May, 2023]

Figure is taken from Mightex's blog on Optogenetics found <u>here.</u> [accessed 19 May, 2023]

Applications on Other Fields

Cardiology: Control heart muscle cells, investigate arrhythmias.

Endocrinology: Studies hormone secretion and regulation with light-signals.

Cell Biology: Investigates organelle dynamics and protein localization.

Bioengineering: Using light to create biosensors and bioactuators.

Ophthalmology: Regeneration of eye-sight with optogenetics.

The Outcomes

- Activate or inhibit specific neurons or tissues with light.
- It relies on light-sensitive proteins called **opsins**, which can be expressed in target cells through **genetic modification**.
- Optogenetics offers high temporal precision.
- Parallel activation of neurons is crucial for studying complex neural circuits: Spatial light modulators (SLMs) and Holography.
- Ongoing advancements are focused on **improving the tools**:
 - developing more efficient opsins,
 - expanding the range of wavelengths for activation,
 - enhancing the spatial precision of light delivery.

References and Further Reading

- Nagel, G., Szellas, T., Huhn, W., Kateriya, S., Adeishvili, N., Berthold, P., Ollig, D., Hegemann, P., & Bamberg, E. (2003, November 13). Channelrhodopsin-2, a directly light-gated cation-selective membrane channel. *Proceedings of the National Academy of Sciences*, 100(24), 13940–13945. https://doi.org/10.1073/pnas.1936192100
- 2. Boyden, E. S., Zhang, F., Bamberg, E., Nagel, G., & Deisseroth, K. (2005, August 14). Millisecond-timescale, genetically targeted optical control of neural activity. *Nature Neuroscience*, *8*(9), 1263–1268. <u>https://doi.org/10.1038/nn1525</u>
- 3. Ju. (n.d.). Neuroscience: Canadian 1st Edition Open Textbook. OpenLibrary. <u>https://ecampusontario.pressbooks.pub/neuroscience/</u>
- 4. Shemesh, O.A., Tanese, D., Zampini, V. *et al.* Temporally precise single-cell-resolution optogenetics. *Nat Neurosci* **20**, 1796–1806 (2017). https://doi.org/10.1038/s41593-017-0018-8
- 5. Ronzitti, E., Ventalon, C., Canepari, M., Forget, B. C., Papagiakoumou, E., & Emiliani, V. (2017, October 13). Recent advances in patterned photostimulation for optogenetics. *Journal of Optics*, *19*(11), 113001. <u>https://doi.org/10.1088/2040-8986/aa8299</u>
- 6. Optogenetic Stimulation: The Ultimate Guide | Mightex. (2020, March 24). Mightex | Stimulation and Imaging for Life Science Research. https://www.mightexbio.com/optogenetic-stimulation/
- 7. Yung, Welsh, & Minderer. (n.d.). *Talking Back to the Brain: Using Light to Uncover the Language of Neurons*. Science in the News (SITN) Conferences. Retrieved May 21, 2023, from https://sitn.hms.harvard.edu/wp-content/uploads/2014/01/SITN-Optogenetics-full-presentation.pdf
- 8. Chen, W., Li, C., Liang, W., Li, Y., Zou, Z., Xie, Y., Liao, Y., Yu, L., Lin, Q., Huang, M., Li, Z., & Zhu, X. (2022, April 19). The Roles of Optogenetics and Technology in Neurobiology: A Review. *Frontiers in Aging Neuroscience*, 14. <u>https://doi.org/10.3389/fnagi.2022.867863</u>
- 9. Fenno, L., Yizhar, O., & Deisseroth, K. (2011, July 21). The Development and Application of Optogenetics. *Annual Review of Neuroscience*, *34*(1), 389–412. https://doi.org/10.1146/annurev-neuro-061010-113817
- 10. Rost, B. R., Schneider-Warme, F., Schmitz, D., & Hegemann, P. (2017, November). Optogenetic Tools for Subcellular Applications in Neuroscience. *Neuron*, *96*(3), 572–603. <u>https://doi.org/10.1016/j.neuron.2017.09.047</u>

Q&A Session

Feel free to ask me any question!

Gökhan Koçmarlı gokhankocmarli@marun.edu.tr

EE4092: Advanced Biomedical Optics **Optogenetics**

